Lagrange Multiplier Proof

I have only found proof of Lagrange multiplier with one constraint only. I could not foound proof of multiple constraints. So, I generalized the proof. If you find any mistakes in my proof (as if there would be anyone reading my posts XD), please let me know.

One Constraint

Let P=(q1(t0),...,qn(t0),˙q0(t0),...,˙qn(t0))P=(q1(t0),...,qn(t0),˙q0(t0),...,˙qn(t0)) be the point where the Lagragian LL is extremized at the constraint f1f1. Let r(t)=(q1(t),...,qn(t),˙q0(t),...,˙qn(t))r(t)=(q1(t),...,qn(t),˙q0(t),...,˙qn(t)) be a parametrized function on f1f1. Define L=(Lq,...,L˙q)L=(Lq,...,L˙q) Let h(t)=L(q1(t),...˙q(t))h(t)=L(q1(t),...˙q(t)). Then, ddth(t)=kLqk˙qk+L˙qkd˙qkdt=Ldrdt.ddth(t)=kLqk˙qk+L˙qkd˙qkdt=Ldrdt. At extremum PP, dhdt=Ldrdt=0.dhdt=Ldrdt=0. As rr is an arbitrary parametrized function of f1f1, LL is orthogonal to any parametrized function of f1f1. Then LL is parallel to f1f1 L=λ1f1,L=λ1f1, for some constant λλ.

More Constraints

As we have seen LL is extremized at f1f1 when L=λ1f1,L=λ1f1, let h(t)=Lλ1f1.h(t)=Lλ1f1. Then, using argument from above, we know that extremum occurs when Lλ1f1=λ2f2.Lλ1f1=λ2f2. Similarly, for mm constraints, L=mα=1λαfα.L=mα=1λαfα.

Aftermath

As we know δS=0δS=0 can be written as t2t1(δLmα=1λαδfα)dt=0t2t1k(Lqkδqk+(L˙qk)δ˙qkmα=1λα(fαqkδqk+(fα˙qk)δ˙qk))dt=0t2t1(δLmα=1λαδfα)dt=0t2t1k(Lqkδqk+(L˙qk)δ˙qkmα=1λα(fαqkδqk+(fα˙qk)δ˙qk))dt=0 Integrating by part, we have (L˙q)dδqdtdt=L˙qδq(δqddtL˙q)dt(L˙q)dδqdtdt=L˙qδq(δqddtL˙q)dt and (fα˙q)dδqdtdt=fα˙qδq(δqddtfα˙q)dt(fα˙q)dδqdtdt=fα˙qδq(δqddtfα˙q)dt So, k[δqkL˙qk]t2t1+t2t1kδqk(LqkddtL˙qk)+mα=1[λα(fαqkddtfα˙qk)δqk+λαddt(fα˙qαδqk)]dt=0.k[δqkL˙qk]t2t1+t2t1kδqk(LqkddtL˙qk)+mα=1[λα(fαqkddtfα˙qk)δqk+λαddt(fα˙qαδqk)]dt=0. As δqk(t2)=δqk(t1), t2t1kδqk(LqkddtL˙qk)+mα=1λα[(fαqkddtfα˙qk)δqk+ddt(fα˙qαδqk)]dt=0. Similarly, integrating by part again, we have λαddt(f˙qδq)=ddt(λαfα˙qδq)dλαdt(f˙qδq). Then, [λαfα˙qkδqk]t2t1+t2t1[LqkddtL˙qk+mα=1λα(fαqkddtfα˙qk)mα=1(dλαdt)(f˙qk)]δqkdt=0. Define Qk=mα=1[λα(fαqkddtfα˙qk)dλαdtfα˙qk]. As δqk(t2)=δqk(t1), t2t1k[LqkddtL˙qkQk]δqkdt=0. From above section, we know that L=mα=1λαfα. So, this time we know that for each coordinate LqkddtL˙qk=Qk

Comments

Popular Posts