Lagrange Multiplier Proof
I have only found proof of Lagrange multiplier with one constraint only. I could not foound proof of multiple constraints. So, I generalized the proof. If you find any mistakes in my proof (as if there would be anyone reading my posts XD), please let me know.
One Constraint
Let P=(q1(t0),...,qn(t0),˙q0(t0),...,˙qn(t0))P=(q1(t0),...,qn(t0),˙q0(t0),...,˙qn(t0)) be the point where the Lagragian LL is extremized at the constraint f1f1. Let →r(t)=(q1(t),...,qn(t),˙q0(t),...,˙qn(t))→r(t)=(q1(t),...,qn(t),˙q0(t),...,˙qn(t)) be a parametrized function on f1f1. Define ∇L=(∂L∂q,...,∂L∂˙q)∇L=(∂L∂q,...,∂L∂˙q) Let h(t)=L(q1(t),...˙q(t))h(t)=L(q1(t),...˙q(t)). Then, ddth(t)=∑k∂L∂qk˙qk+∂L∂˙qkd˙qkdt=∇L⋅d→rdt.ddth(t)=∑k∂L∂qk˙qk+∂L∂˙qkd˙qkdt=∇L⋅d→rdt. At extremum PP, dhdt=∇L⋅d→rdt=0.dhdt=∇L⋅d→rdt=0. As →r→r is an arbitrary parametrized function of f1f1, LL is orthogonal to any parametrized function of f1f1. Then LL is parallel to f1f1 ∇L=λ1∇f1,∇L=λ1∇f1, for some constant λλ.
More Constraints
As we have seen LL is extremized at f1f1 when ∇L=λ1∇f1,∇L=λ1∇f1, let h(t)=L−λ1f1.h(t)=L−λ1f1. Then, using argument from above, we know that extremum occurs when ∇L−λ1∇f1=λ2∇f2.∇L−λ1∇f1=λ2∇f2. Similarly, for mm constraints, ∇L=m∑α=1λα∇fα.∇L=m∑α=1λα∇fα.
Comments
Post a Comment