Christoffel Symbol of the Second Kind
Dropping the parallel postulate in the Euclidean space axiom will give a curved space. The Euclidean space without the parallel postulate is called the Riemann space.
Derivative of Basis Set
For a general set of coordinate defined using the constant basis set (x,y) ξ=ξ(x,y)η=η(x,y). Since the general coordinate set is not neccesary constant, dξ=∂ξ∂xdx+∂ξ∂ydydη=∂η∂xdx+∂η∂ydy, or in matrix form, (dξdη)=(∂ξ∂x∂ξ∂y∂η∂x∂η∂y)(dxdy). To have a one-to-one mapping, the matrix should be invertible and gives 1 unique solution. So, its deteminent del(∂ξ∂x∂ξ∂y∂x∂y∂x∂y)≠0, must be non-zero. Denote the matrix as Λα′β≡(∂ξ∂x∂ξ∂y∂η∂y∂η∂y.) Let ϕ be a scalar field. A one-form is defined as ~dϕ→(∂ϕ∂ξ,∂ϕ∂η). Then, by chain rule, ∂ϕ∂ξ=∂x∂ξ∂ϕ∂x+∂y∂ξ∂ϕ∂y. Similarly for η, we have (∂ϕ∂ξ∂ϕ∂η)=(∂ϕ∂x∂ϕ∂y)(∂ξ∂x∂ξ∂y∂η∂y∂η∂y.) The components are given by (~dϕ)β′=Λαβ′(~dϕ)α. Note that Λαβ′ is the inverse of Λα′β.
Christoffel Symbol of the Second Kind
For an arbitrary vector, →V, in any vector space, its derivative in general is ∂→Vxβ=∂∂xβ(Vα→eα)=∂Vα∂xβ→eα+Vα∂→eα∂xβ. As the derivative of a vector is also a vector, the term ∂→eα∂xβ is also a vector and can be expressed in terms of the linear combination of the basis ∂→eα∂xβ=Γμαβ→eμ, where the Γμαβ is called the Christoffel symbol of the second kind. It is the μth component of ∂→eα∂xβ.
- α is the αth component of the vector being differentiated
- β is the βth component of the vector differentiated with respect to
- μ is the μth component of the newly differentiated vector
For polar coordinate basis in 2D Euclidean space ∂→er∂r=0\implyΓμrr=0,′μ∂vecer∂θ=1r→eθ\implyΓrrθ=0,Γθrθ=1r∂→eθ∂r=1r→eθ\implyΓrθr=0,Γθθr=1r=∂→eθ∂θ=−r→er\implyΓrθθ=−r,Γθ\tehtaθ=0
Covariant Derivative
With the defintion of Christoffel symbol, the derivative of the vector →V is ∂→V∂xβ=∂Vα∂xβ→eα+VαΓμαβ→eμ. The second term is sum α and sum μ. So, the dummy variables can be relabelled ∂→V∂xβ=∂Vα∂xβ→eα+VμΓαμβ→eα=(∂Vα∂xβ+VμΓαμβ)→eα. Define the covariant derivative of a vector, →V, as Vα;β:=Vα,β+VμΓαμβ. Then, ∂→V∂xβ=Vα;β→eα. Consider a scalar ϕ=pαVα, where pα is the component of a one-form ˜p and Vα is the component of a vector →V. Then, the derivative of ϕ, by product rule, is ∇βϕ=ϕ,β=∂pα∂xβVα+pα∂Vα∂xβ=∂pα∂xβVα+pαVα;β−pαVμΓαμβ=(∂pα∂xβ−pμΓμαβ)Vα+pαVα;β. Define the covariant derivative of a one-form, ˜p, as pα;β:=(∇β˜p)α:=(∇˜p)αβ=pα,β−pμΓμαbeta. For a (0, 2) tensor, similar derivation can be done with two vectors ∇βTμν=Tμν,β−TανΓαμβ−TμαΓανβ. In general, ∇βTμν=Tμν,β−TανΓαμβ−TμαΓανβ∇βAμν=Aμν,β+AανΓμαβ+AμαΓναβ∇βBμν=Bμν,β+BαnuΓμαβ−BμαΓανβ.
Symmetry of Christoffel Symbol of 2nd Kind in Euclidean space
For any arbitrary scalar field ϕ, its gradient ∇βϕ is a one-form with components ϕ,β. The second derivative of its gradient is a tensor with components ϕ,β;α=ϕ,β,α−ϕ,μΓμβα. In Cartiesian coordinate of Euclidean space, the covariant derivative is the same as directional derivative, and since ϕ,β,α=∂∂xα∂∂xβϕ=∂∂xβ∂∂xαϕ, the tensor is symmetric. As a tensor is a function and changing basis will not alter the output value, if it is symmetric in Cartesian coordinate, it is symmetric in other coordinate system as well. Therefore, ddxαddxβϕ=ddxβddxαϕ Since ddxαddxβϕ=ddxβddxαϕ, we have ϕ,β,α−ϕ,μΓμβα=ϕ,α,β−ϕ,μΓμαβΓμαβϕ,μ=Γμβαϕ,μΓμαβ=Γμβα. So, the Christoffel symbol of the 2nd kind is symmetric in lower index.
Finding Christoffel Symbol
If the Christoffel symbol is symmetric in a vector space, we can make use of the symmetry property to find its expression in terms of the metric tensor. Substituting the metric tensor into the definition of covariant derivative of (0,2) tensor, we have gαβ,μ=Γμαμgνβ+Γνβμgανgαμ,β=Γναβgνμ+Γnuμβgανgβμ,α=−Γnuβαgνμ−Γνμαgβν. If the metric tensor is symmetric, that is gβν=gνβ. Then, gαβ,μ+gαμ,β−gβμ,α=(Γναμ−Γνμα)gνβ+(Γναβ−Γνβα)gνμ+(Γνβμ+Γνμβ)gαν. Because of the symmtry of lower index of the Christoffel symbol, the first two terms vanish and the two Christoffel symbols of the third term are identical. Therefore, we have gαβ,μ+gαμ,β−gβμ,α=2gανΓνβμ. Since gαγgαν=δγν, the Christoffel symbol is given by Γγβμ=12gαγ(gαβ,μ+gαμ,β−gβμ,α)
Comments
Post a Comment