Classically, angular momentum is defined as
→L=→r×→p
Replacing with operators, angular momentum in quantum mechanics is defined as
ˆL=(ˆy^pz−ˆz^pyˆz^px−ˆx^pzˆx^py−ˆy^px)
The square of angular momentum is simply
ˆL2=ˆL2x+ˆL2y+ˆL2z
Commutator of Angular Momentum Component
[ˆLy,ˆLz]=[ˆz^px−ˆx^pz,ˆx^py−ˆy^px]=[ˆzˆpx,ˆxˆpy]−[ˆxˆpz,ˆxˆpy]−[ˆzˆpx,ˆyˆpx]+[ˆxˆpz,ˆyˆpx]=−iℏˆzˆpy+iℏˆyˆpz=iℏLx
Similarly for
Lx,Ly. So, we have,
[ˆLy,ˆLz]=iℏLx[ˆLz,ˆLx]=iℏLy[ˆLx,ˆLy]=iℏLz
Commutator of
Lz and
L2 is
[ˆLz,ˆL2x]=[ˆLz,ˆL2x+ˆL2y+ˆL2z]=[ˆLz,ˆL2x]+[ˆLz,ˆL2y]+[ˆLz,ˆL2z]=[ˆLz,ˆL2x]+[ˆLz,ˆL2y]
As
Lz must commute to itself. By
[ˆLz,ˆLx]=iℏˆLyˆLxˆLz=ˆLzˆLx−iℏLy[ˆLz,ˆL2x]=ˆLzˆLxˆLx−ˆLxˆLxˆLz=(iℏˆLy+ˆLxˆLz)ˆLx−ˆLx(ˆLzˆLx−iℏˆLy)=iℏ(ˆLyˆLx−ˆLxˆLy)=−iℏ[ˆLx,ˆLy]
Similarly,
[ˆLz,ˆL2y]=−iℏ[ˆLy,ˆLx]=iℏ[ˆLx,ˆLy]
Thus,
[ˆLz,ˆL2x]=0
As
z direction can be chosen to be
y or
x axis as well, if
[ˆLz,ˆL2x]=0, same must be true for
x or
y
[L2,ˆLx]=0[L2,ˆLy]=0[L2,ˆLz]=0
Ladder Operators
The ladder operators are defined as
L±≡Lx±iLy
Let
ϕl,m be the eigenstate of
L2 and
Lz such that
ˆL2ϕl,m=ℏ2Qlϕl,mˆLzϕl,m=ℏmϕl,m
ℏ and
ℏ2 are put to handle the dimension. Then
ˆLzˆL±ϕl,m=ˆL±ˆLzϕl,m+[ˆLz,ˆL±]ϕl,m=ˆL±ℏmϕl,m+ℏˆL±ϕl,m=(ˆL±ℏmϕl,m)(ℏ(m±1))
So, the eigenvalue was stepped up or down after applying the ladder operator.
Upper & Lower Bound
An upper bound exists or else
Lz will eventually larger than
L2. Let
Yl,m be the upper bound eigenstate
L+Yl,m=0
So,
<L+Yl,m|L+Yl,m>=0<Yl,m|L−L+Yl,m>=0<Yl,m|(L2x+L2y+i[Lx,Ly])Yl,m>=0<Yl,m|(L2−L2z−ℏLz)Yl,m>=0(ℏ2Ql−m2ℏ2−mℏ2)<Yl,m|Yl,m>=0m(m+1)=Ql
Let
Ql≡l(l+1)
Then, the maximum
m+ eigenvalue will be
m+=l
Similarly,
m−=−l
The number of states
m can have in
l state is
Nl=2l+1
So,
l=(Nl−1)/2 can either be an integer or half integer.
Lz in polar coordinate form is given by
^Lz=ℏi∂ϕ
Applying to the eigenfunction
ˆLzYl,m=ℏi∂ϕYl,mimYl,m=∂ϕYl,mYl,m=eimϕPl,m(θ)={Yl,m(θ,0),m∈Z−Yl,m(θ,0),m∈12Z
This means that the state when
l is half integer is always 0. As the states for
l∈12Z do not represent
anything,
l must be integer.
Comments
Post a Comment