Angular Momentum

Vector model of orbital angular momentum
Classically, angular momentum is defined as L=r×p Replacing with operators, angular momentum in quantum mechanics is defined as ˆL=(ˆy^pzˆz^pyˆz^pxˆx^pzˆx^pyˆy^px) The square of angular momentum is simply ˆL2=ˆL2x+ˆL2y+ˆL2z

Commutator of Angular Momentum Component

[ˆLy,ˆLz]=[ˆz^pxˆx^pz,ˆx^pyˆy^px]=[ˆzˆpx,ˆxˆpy][ˆxˆpz,ˆxˆpy][ˆzˆpx,ˆyˆpx]+[ˆxˆpz,ˆyˆpx]=iˆzˆpy+iˆyˆpz=iLx Similarly for Lx,Ly. So, we have, [ˆLy,ˆLz]=iLx[ˆLz,ˆLx]=iLy[ˆLx,ˆLy]=iLz Commutator of Lz and L2 is [ˆLz,ˆL2x]=[ˆLz,ˆL2x+ˆL2y+ˆL2z]=[ˆLz,ˆL2x]+[ˆLz,ˆL2y]+[ˆLz,ˆL2z]=[ˆLz,ˆL2x]+[ˆLz,ˆL2y] As Lz must commute to itself. By [ˆLz,ˆLx]=iˆLyˆLxˆLz=ˆLzˆLxiLy[ˆLz,ˆL2x]=ˆLzˆLxˆLxˆLxˆLxˆLz=(iˆLy+ˆLxˆLz)ˆLxˆLx(ˆLzˆLxiˆLy)=i(ˆLyˆLxˆLxˆLy)=i[ˆLx,ˆLy] Similarly, [ˆLz,ˆL2y]=i[ˆLy,ˆLx]=i[ˆLx,ˆLy] Thus, [ˆLz,ˆL2x]=0 As z direction can be chosen to be y or x axis as well, if [ˆLz,ˆL2x]=0, same must be true for x or y [L2,ˆLx]=0[L2,ˆLy]=0[L2,ˆLz]=0

Ladder Operators

The ladder operators are defined as L±Lx±iLy Let ϕl,m be the eigenstate of L2 and Lz such that ˆL2ϕl,m=2Qlϕl,mˆLzϕl,m=mϕl,m and 2 are put to handle the dimension. Then ˆLzˆL±ϕl,m=ˆL±ˆLzϕl,m+[ˆLz,ˆL±]ϕl,m=ˆL±mϕl,m+ˆL±ϕl,m=(ˆL±mϕl,m)((m±1)) So, the eigenvalue was stepped up or down after applying the ladder operator.

Upper & Lower Bound

An upper bound exists or else Lz will eventually larger than L2. Let Yl,m be the upper bound eigenstate L+Yl,m=0 So, <L+Yl,m|L+Yl,m>=0<Yl,m|LL+Yl,m>=0<Yl,m|(L2x+L2y+i[Lx,Ly])Yl,m>=0<Yl,m|(L2L2zLz)Yl,m>=0(2Qlm22m2)<Yl,m|Yl,m>=0m(m+1)=Ql Let Qll(l+1) Then, the maximum m+ eigenvalue will be m+=l Similarly, m=l The number of states m can have in l state is Nl=2l+1 So, l=(Nl1)/2 can either be an integer or half integer. Lz in polar coordinate form is given by ^Lz=iϕ Applying to the eigenfunction ˆLzYl,m=iϕYl,mimYl,m=ϕYl,mYl,m=eimϕPl,m(θ)={Yl,m(θ,0),mZYl,m(θ,0),m12Z This means that the state when l is half integer is always 0. As the states for l12Z do not represent anything, l must be integer.

Comments

Popular Posts