Maxwell's Equations
Ampere's Law with Maxwell's Correction
Since Ampere's Law is based on the assumption that current is steady $$\nabla\times \textbf{J} = -\frac{\partial\rho}{\partial t}$$ Applying divergence on Ampere's Law $$\nabla\cdot (\nabla\times \textbf{B}) = \nabla \cdot (\mu_0\textbf{J})$$ By definition of curl and divergence $$\nabla\cdot (\nabla\times \textbf{B}) = 0$$ When current is not steady \begin{align} \nabla \cdot (\mu_0\textbf{J}) &= \mu_0 (\nabla \cdot \textbf{J}) \\ &= -\mu_0 \frac{\partial\rho}{\partial t} \\ &= -\mu_0 \frac{\partial}{\partial t}\left( \epsilon_0 \nabla \cdot \textbf{E} \right) \\ &= -\mu_0 \epsilon_0 \frac{\partial}{\partial t}\left( \nabla \cdot \textbf{E} \right) \\ \end{align} In order to achieve \(\nabla\cdot (\nabla\times \textbf{B}) = 0\), the curl of magnetic field should be written as $$ \bbox[5px,border:2px solid #666] { \nabla\times \textbf{B} = \mu_0\textbf{J} + \mu_0 \epsilon_0 \frac{\partial\textbf{E}}{\partial t} } $$ in which $$\epsilon_0 \frac{\partial\textbf{E}}{\partial t}$$ is called the displacement current. Not that Ampere's Law is wrong, but Ampere's Law is applicable only when current is steady.
A fat wire, radius \(a\), carries a constant current \(I\), uniformly distributed over its cross section. A narrow gap in the wire, of width \(w \ll a\), forms a parallel-plate capacitor. Find the magnetic field in the gap, at a distance \(s < a\) from the axis.
Solution: The displacement current density is $$\vec{J}_b=\epsilon_0\frac{\partial \vec{E}}{\partial t}=\frac{I}{A}=\frac{I}{\pi a^2}\hat{z}.$$ Drawing an amperian loop at radius \(s\), \begin{align} \oint \vec{B}\cdot d\vec{l} &= \mu_0 I_{\text{d}_{\text{enc}}}\\ B\cdot 2\pi s &= \mu_o\frac{I}{\pi a^2}\cdot \pi s^2 = \mu_0I\frac{s^2}{a^2}\\ B &= \frac{\mu_0Is^2}{2\pi s a^2} \end{align} So, $$\vec{B}=\frac{\mu_0Is}{2\pi a^2}\hat{\phi}$$
A thin wire connects to the centers of the plates. The current \(I\) is constant, the radius of the capacitor is \(a\), and the separation of the plates is \(w\ll a\). Assume that the current flows out over the plates in such a way that the surface charge is uniform, at any given time, and is zero at \(t=0\). Find the magnetic field at a distance \(s\) from the axis.
$$\sigma(t)=\frac{Q(t)}{\pi a^2}=\frac{It}{\pi a^2}$$ The electric field is $$\vec{E}=\frac{\sigma(t)}{\epsilon_0}\hat{z}=\frac{It}{\pi\epsilon_0 a^2}\hat{z}$$ The displacement current density is $$\vec{J}_b=\epsilon_0\frac{\partial \vec{E}}{\partial t}=\frac{I}{\pi\ a^2}\hat{z}.$$ Drawing an amperian loop at radius \(s\), \begin{align} \oint \vec{B}\cdot d\vec{l} &= \mu_0 I_{\text{d}_{\text{enc}}}\\ B\cdot 2\pi s &= \mu_o\frac{I}{\pi a^2}\cdot \pi s^2 = \mu_0I\frac{s^2}{a^2}\\ B &= \frac{\mu_0Is^2}{2\pi s a^2} \end{align} So, $$\vec{B}=\frac{\mu_0Is}{2\pi a^2}\hat{\phi}$$
Comments
Post a Comment