Simple Harmonic Oscillation
When the only force applying on an object is proportional to its position
$$F = -kx$$
the equation of motion is
$$m\frac{d^2x}{dt^2} = -kx$$
The general solution is
$$B\cos (\omega t ) + C \sin (\omega t)$$
where
$$\omega = \sqrt{\frac{k}{m}}$$
Damped Harmonic Oscillation
A damping force hinder an object's motion by exerting a force proportional to the object's velocity
$$F_{damping} = -c\frac{dx}{dt}$$
the equation of motion is
$$m\frac{d^2x}{dt^2} = -kx -c\frac{dx}{dt}$$
Let
$$\gamma = \frac{c}{2m}$$
and
$$\omega_0^2 = \frac{k}{m}$$
The equation of motion becomes
$$\frac{d^2x}{dt^2} +2\gamma\frac{dx}{dt} + \omega_0^2 = 0$$
Let
$$x = e^{\lambda t}$$
The equation of motion is
$$(\lambda^2 + 2\gamma\lambda + \omega_0^2)e^{\lambda t} = 0$$
To have a non-trivial solution,
$$\lambda^2 + 2\gamma\lambda + \omega_0^2 = 0$$
Solve for \(\lambda\)
$$\lambda = -\gamma \pm \sqrt{\gamma^2-\omega_0^2}$$
The general solution is
$$ \bbox[5px,border:2px solid #666]
{
x(t) = e^{\gamma t}\left[ B \exp\left(\sqrt{\gamma^2-\omega_0^2}t\right) + C\exp\left(-\sqrt{\gamma^2-\omega_0^2}t\right) \right]
}
$$
Underdamping
When
$$\omega_0^2 > \gamma^2$$
Let
$$\omega_d = \sqrt{\omega_0^2-\gamma^2}$$
The square root \(\sqrt{\gamma^2-\omega_0^2}\) is not real. The motion should be oscillation. The general solution is
$$x(t) = e^{-\gamma t} (B e^{i\omega_d t} + C e^{-i\omega_d t}) = A e^{-\gamma t} \sin (\omega_d t + \phi)$$
Critical damping
When
$$\omega_0^2 = \gamma^2$$
So
$$\lambda = -\gamma$$
Let \(x(t) = f(t)e^{\gamma t}\).
\begin{align}
\frac{d^2x}{dt^2} +2\gamma\frac{dx}{dt} + \omega_0^2 &= 0 \\
\frac{d^2f}{dt^2} + (2\lambda + 2\gamma) \frac{df}{dt}e^{\lambda t} + (\lambda^2 + 2\lambda\gamma + \gamma^2)fe^{\lambda t} &= 0 \\
\frac{d^2f}{dt^2} &= 0 \\
f(t) &= At + D
\end{align}
The general solution is
$$x(t) = (At + D)e^{-\gamma t}$$
Overdamping
When
$$\omega_0^2 < \gamma^2$$
The general solution is
$$x(t) = Be^{-(\gamma-q)t} + Ce^{-(\gamma + q)t}$$
where
$$q = \sqrt{\gamma^2 - \omega_0^2}$$
The root is real so the motion is exponential rather than oscillation.
Comments
Post a Comment