Coordinate Sysytem

Coordinate systems other that Cartesian coordinate system sometimes can be more useful in some cases.

Plane Polar Coordinate System

The unit vectors for plane polar coordinate system are \begin{align} \hat{r} &= \cos\theta\hat{i} + \sin\theta\hat{j}\\ \hat{\theta} &= -\sin\theta\hat{i} + \cos\theta\hat{j} \\ \end{align} As they depend on \(\theta\), which may not be constant, they may have non-zero derivative, unlike the \(\hat{i}\) and \(\hat{j}\) in Cartesian coordinate system \begin{align} \dot{\hat{r}} &= -\dot{\theta}\sin\theta\hat{i} + \dot{\theta}\cos\theta\hat{j} = \dot{\theta}\hat{\theta} \\ \dot{\hat{\theta}} &= -\dot{\theta}\cos\theta\hat{i} - \dot{\theta}\sin\theta\hat{j} = -\dot{\theta}\hat{r}\\ \end{align} The position vector \(\textbf{r}(t)\) is given by $$\textbf{r}(t) = r(t)\hat{r}$$ The velocity is $$\textbf{v}(t) = r(t)\dot{\hat{r}} + \dot{r}(t)\hat{r} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$ The acceleration is \begin{align} \textbf{a}(t) &= \ddot{r}\hat{r} + \dot{r}\dot{\theta}\hat{\theta} + (r\ddot{\theta} + \dot{r}\dot{\theta})\hat{\theta} + r\dot{\theta}(-\dot{\theta}\hat{r})\\ &= (\ddot{r} - r\dot{\theta}^2)\hat{r} + (2\dot{r}\dot{\theta} + r\ddot{\theta})\hat{\theta} \end{align}

Example

A particle travels at constant speed with a plane polar coordinates defined by $$r(t)=k(1+\cos\theta(t)).$$ The particle is at \(\theta=0\) at \(t=0\). Find \(\theta\) as a function of \(t\).

Solution: \begin{align} \dot{r} &= k\dot{\theta}\sin\theta\\ v_0 &= \sqrt{\dot{r}^2+(r\dot{\theta})^2}\\ &= \sqrt{(k\dot{\theta}\sin\theta)^2+(k\dot{\theta}(1+\cos\theta))^2}\\ &= k\dot{\theta}\sqrt{2+2\cos\theta}\\ &= 2k\dot{\theta}\cos\frac{\theta}{2}\\ \int v_0dt &= \int 2k\cos\frac{\theta}{2}d\theta\\ v_0t&=4k\sin\frac{\theta}{2}+C, \end{align} where \(C\) is a constant. At \(t=0\), \(\theta=0 \implies C=0\). So, $$\theta(t)=2\sin^-1\left(\frac{v_0t}{4k}\right)$$

Cylindrical Polar Coordinate System

The unit vectors for plane polar coordinate system are \begin{align} &\hat{s} = \cos\phi\hat{i} + \sin\phi\hat{j}\\ &\hat{\phi} = -\sin\phi\hat{i} + \cos\phi\hat{j} \\ &\hat{k} \\ \end{align} As \(\hat{s}\) and \(\hat{\phi}\) depend on \(\phi\), which may not be constant, they may have non-zero derivative, unlike the \(\hat{i}\) and \(\hat{j}\) in Cartesian coordinate system \begin{align} \dot{\hat{s}} &= -\dot{\phi}\sin\phi\hat{i} + \dot{\phi}\cos\phi\hat{j} = \dot{\phi}\hat{\phi} \\ \dot{\hat{\phi}} &= -\dot{\phi}\cos\phi\hat{i} - \dot{\phi}\sin\phi\hat{j} = -\dot{\phi}\hat{s}\\ \end{align} The position vector \(\textbf{r}(t)\) is given by $$\textbf{r}(t) = s(t)\hat{s} + z(t)\hat{k}$$ The velocity is $$\textbf{v}(t) = s(t)\dot{\hat{s}} + \dot{s}(t)\hat{s} + \dot{z}\hat{k} = \dot{s}\hat{s} + s\dot{\phi}\hat{\phi} + \dot{z}\hat{k}$$ The acceleration is \begin{align} \textbf{a}(t) &= \ddot{s}\hat{s} + \dot{s}\dot{\phi}\hat{\phi} + (s\ddot{\phi} + \dot{s}\dot{\phi})\hat{\phi} + s\dot{\phi}(-\dot{\phi}\hat{s}) + \ddot{z}\hat{k}\\ &= (\ddot{s} - s\dot{\phi}^2)\hat{s} + (2\dot{s}\dot{\phi} + s\ddot{\phi})\hat{\phi} + \ddot{z}\hat{k} \end{align}

Spherical Coordinate System

The unit vectors for spherical coordinate system are \begin{align} \hat{r} &= \sin\theta\cos\phi\hat{i} + \sin\theta\sin\phi\hat{j} + \cos\theta\hat{k}\\ \hat{\theta} &= -\cos\theta\cos\phi\hat{i} + \cos\theta\sin\phi\hat{j} -\sin\theta\hat{k} \\ \hat{\phi} &= \sin\phi\hat{i} + \cos\phi\hat{j} \\ \end{align} As they depend on \(\phi\) and \(\theta\), which may not be constant, they may have non-zero derivative, unlike the \(\hat{i}\), \(\hat{j}\) and \(\hat{k}\) in Cartesian coordinate system \begin{align} \dot{\hat{r}} &= (\dot{\theta}\cos\theta\cos\phi-\dot{\phi}\sin\theta\sin\phi)\hat{i} + (\dot{\theta}\cos\theta\sin\phi + \dot{\phi}\sin\theta\cos\phi)\hat{j} -\dot{\theta}\sin\theta\dot{k} = \dot{\theta}\hat{\theta} + \dot{\phi}\sin\theta\hat{\phi} \\ \dot{\hat{\theta}} &= -\dot{\theta}\hat{r} + \dot{\phi}\cos\theta\hat{\phi}\\ \dot{\hat{\phi}} &= -\dot{\phi}\sin\theta\hat{r} - \dot{\phi}\cos\theta\hat{\phi} \end{align} The position vector \(\textbf{r}(t)\) is given by $$\textbf{r}(t) = r(t)\hat{r}$$ The velocity is $$\textbf{v}(t) = r(t)\dot{\hat{r}} + \dot{r}(t)\hat{r} = \dot{r}\hat{r} + r\dot{\phi}\sin\theta\hat{\phi} + r\dot{\theta}\hat{\theta}$$ The acceleration is \begin{align} \textbf{a}(t) = &(\ddot{r} - r\dot{\phi}^2\sin^2\theta - r\dot{\theta}^2)\hat{r}\\ &+(r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2\sin\theta\cos\theta)\hat{\theta}\\ &+(r\ddot{\phi}\sin\theta + 2\dot{r}\dot{\phi}\sin\theta + 2r\dot{\theta}\dot{\phi}\cos\theta) \hat{\phi} \\ \end{align}

Comments

Popular Posts